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Abstract

This report considers a feedback control law for linear time-varying and
time invariant discrete systems based on a receding horizon concept applied to
a minimum energy problem with fixed terminal constraints. The control law is
shown to be asymptotically stable and to result in a new method for stabilizing
linear time-varying systems as well as extending some well known methods for
stabilizing time invariant systems. In particular, the stabilizing gains of
the feedback control law are obtained from the solution to a discrete Riccati
equation over an arbitrary finite time interval, which is relatively easy to
compute. The gain matrix reduces to a constant matrix for linear time invariant

systems. Some stability results in [2] and [5] will turn out to be special cases

of these results. The results parallel those of [4] for linear continuous time

systems, although the technical details are tedious and more involved.
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I. Introduction
Consider a linear discrete system
x(i+l) = o, x (i) + B(i)u(i) (1.1)
y(i) = c(i)x(i) (1.2)
where °i’8(i) and C(i) are nxn, nxn and pxn matrices, and ¢, is assumed to
be nonsingular.* Consider also a cost function

if -1
T y'(1)Q()y(i) + u'(1)R(1)u(i) (1.3)
=i

o

i

where Q(i) = D'(i)D(i) > 0 and R(i) > 0, together with the boundary

conditions

"
b

x(i )
¥ s (1.4)

n
o

x(1f)
The optimal solution is obtained by introducing the 2n-dimensional Hamiltonian

system [11]

x(i+1) o -B(1)R™I(1)B' (1) x(i)

e (1.5)
p(i) c'(i)Q(i)c(i), oi p(i+l)

with the optimal control €80

u(1) = -R7I(1)B'(1)plisl) . (1.6)
The ecuivalent representation of (1.5) is given by

x(i+l) ¢

Lt B(i)R'l(i)B'(i)oi'IC'(i)Q(i)c(i). - BAORTHDB (e fx(D)

p(i+1) -o;ler(aciie) o)t p(i)

(1.7)

#
The shorthand notation ¢, = ®(i+1,i) will be used for the state transition
maggiz~when applicable.
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Let S(i,io) denote the 2n x 2n state transition matrix of the system

(1.7) with the partitioning into four n x n submatrices:
v(i,i ) a(i,i) (1.8)
s(i,io) = [; o **o N
(1,i)) ACi,1))

The open-loop optimal control is given by

u(i) = -R-l(i)B'(i) x(i+l,i°)-A(i+l,io)ﬂ-l(if,io)*(if,ioilx(io) y  (1.9)

when the inverse in (1.9) exists. The optimal closed loop control is

given by
u(i) = R7HDB () 07N, 14100, 34 Dx(i41) (1.10)

whenever the inverse in (1.10) exists. Another representation of
(1.10) will be given in Section III.
The standard regulator problem, which minimizes the cost function

(1.3) with a free terminal condition, has the solution given by
af -1
ali) = -R"1(1)B' (1) I+K(i+1,i)B(i)R (i)B'(ii] K(i+l,i)e x(1) , (1.11)

where K(i,j) is obtained from &
K(i,j) = 0£K(i+1,j)0i - 01K(i+1.j)3(i) R(i) + B'(i)K(i+l,j)B(ii]

x a'(i)x(i+1.i)’1 + ¢ (eME) K330 =0 . a2

The following definition is necessary for further analyses.
Definition. The pair ({@(i+l,i) , B(i)} is said to be uniformly

completely controllable if for some positive integer lc > 1 the following

B

conditions hold: 30
\ .
(1) a IS W(i,itt)) < a,I for all i (1.13)
*
(2) [loci, 3] < a; € |i-3] ) forald i,j (1.14)

¥ Throughout the paper the Euclidean norm is assumed for vectors and the
spectral norm induced by the Luclidean norm for matrices.

¢
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where the controllability matrix W(i,j) is defined by

j-1
W(i,3) = ] o(i,k#l)B()B'(k)®'(i,k+1)

kuit (1.15)

ay and a, are positive constants, and 03(.) maps R into R and
is bounded on bounded intervals.
The uniform complete observability of the pair {@(i+l,i) , C(i)}
is defined similarly as above with the observability matrix
j-1
M(i,5) = ] o'(k,i)C'(k)C(k)e(k,i) (1.16)
k=i
and with a positive integer zo >1 . Let & = max {lc,lo} PR & i
well known [1,2] that under uniform complete controllability and obser-
vability conditions together with

a,I £ Qi) < a.I and a,I <R(i) a1 , (1.17)

5

where @, » 85 5 @ and a, are positive constants, the steady state

6
control law (1.11) with if = ® jis uniformly asymptotically stable, but
practically speaking, it is very difficult to compute K(i,=») for the

stable control. We will show that a modification of the control (1.10)
results in an asymptotically stable control and is optimal in a certain
sense. In particular, the gain matrix for the new control is obtained by
solving a Riccati equation on an arbitrary finite time interval (larger
than lc ) , which is relatively easy to compute in relation to the infinite
time interval for (1.11) with e Preliminaries and some basic
results are given in Section II. The results for time-varying systems are

discussed in Section III and time invariant systems in Section IV. A dual

problem will be discussed in Section V. Throughout this paper the following

.
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matrix identity is used frequently

-1 a5

I-Y@Y +0 Y z=(+yvxlz)” (1.18)
whenever the inverses exist.
II. Some Basic Results.

In this section some basic results are given which are necessary for
the succeeding sections. The corresponding results for continuous-time
systems are well known [6,7 and 8]. It appears, however, that a similar
treatment of discrete systems is not available in the control literature.
Thus we sketch the proofs briefly in the Appendix.

Theorem 2.1. The solution of the matrix Riccati equation (1.12) is bounded

below by
s n .
K(io,lf) :'I—:—“E“-.(lo’ lf) ” (2.1)

where N(i,j) is the solution of the matrix Lyapunov equation

N(1,3) = #N(iel, 38, + CHDQMICD) (2.2)
N(j,j) = O
and the operator G on 12([i°,if-l] 2 ®P) is given by
i-1
(Gu)(i) = ¢ C(i)®(i,k+1)B(k)u(k) . (2.3)
k=i
o

Proof. See Appendix A.

As a consequence of uniform complete controllability, there exist

positive constants ag s Gg and %0 such that

|91, || < e

-1
[ (is1,D)]] < o (2.4)
IBOI] < ey
i — - aid ———— sore l A |
S ———————ee————
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for all i . The positive constants ag and @y are given by ag = ua(l)

and ag = u3(1) from (1.14). From (1.13) - (1.15) we have

®(i,k+1)B(k)B'(k)®"'(i,k+l) 5_u21, ke [i,i+£c-1].
From the above inequality it follows that
na, > tr &(i,k+1)B(k)B'(k)®'(i, k+l)

= ¢y B(k)B'(k)®'(i,k+1)(i, k+1)

|V

tr B(k)B'(k)xmin (¢! (i,k+1)0(i,k+1)]
-1

= tr BOOB'UOA [®(k+1,1)0" (k+1,i)])

2

tr B(k)B'(k)[ max u3(k)] .
l:_k:&c

|v

Thus we have

1800 | = [[8 00| < ttr BOOB (01 2emax  a,00] /oy & ayy .
1<k<t
-"="c

The invariance of the uniform controllability of the system (1.1) under
state feedback control is stated in the next theorem.
Theorem 2.2 . The uniform complete controllability of the system (1.1) is
invariant under a state feedback control of the form
u(i) = K(i)x(i) + v(i) (2.5)

provided ||k(i)|| < @), for some positive constant G, ¢
Proof: See Appendix B.
III. Linear Time-Varying Systems.

For linear time-varying systems, there exist few general methods to
stabilize the linear system (1.1), one of which is the steady state control

for (1.11) as mentioned before. We will suggest another feedback control

law based on a receding horizon conceot which stabilized (1.1) and i= optimal




b i

in' a certain sense. First of all, we represent the fixed terminal control

law (1.10) in terms of a Riccati equation.

Theorem 3.1. The fixed terminal optimal closed-loop control law (1.10) can

be represented as

u(i) = -R7HDB BT A, D)0 x(1) (3.1)
if the inverse in (3.1) exists, where 5(i,j) satisfies
B(1,5) = o7 BCivl, oy - 071 Btisl,f)ey et (D' (D1
o U, e e SR L S e e L e
+ D(1)C(1)0i P(nl,])oi c'(i)p'(i)] D(1)C(1)0i P(1+1,j)0i (3.2)

+ BGi-1RY(i-1)B'(i-1) , P(5,§) = 0 .

Proof: We can obtain the relation (3.2) in a few equivalent ways. It can
be obtained by letting K(i,j) 4 P™1(i,j) in Equation (1.12) with K(§,3) = = .

Thus we have

P(i,5) {0;P°1(1+1,j)0i “ 0;P°1(i+1.j)B(i)[R(i) "

B (1)P72(141,1)B(1)17 1B (1P (101, 9)0, +

¢ (1) (1)p(idecinn?
ozl{P'l(ifi.j)[I-B(i)(R(i)+B'(i)P'l(i+1,j)B(i))B'(i)P'l(i+1,j)] +

L% g AT [, i P |
o, c (i)p (x)D(i)c(x)oi } °i

ozl(P'1(1+1.j)[I+B(1)R’1(1)B'(i)P'l(i+1.j)]'1 ’

o;'lc'(i)n'(i)n(i)c(i)oil}'lo;‘l

0;1[P(i+1.j)+B(1)R'1(i)3'(i)]{I+o;'1c'(i)D'(i)D(i)C(i)

o;ltpciar, enOR  n (2 et
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Let

P(1,§) & P(1,3) + B(i-LR™(1-1)8(i-1) . (3.3)
Then the above equation can be expressed as
P(1,9) = ] 'P(1e1,1) ; I+t C'(i)D'(i)D(i)C(i)oi_lﬁ(i¢l,j)}'l 0,7
+ B(Gi-1RL(1-1)B (i-1) . (3.4)

Combining (3.4) and (1.18) yields (3.2). Since P(if,if) =0 , S(if,if) =

B(if-l)R—l(if-l)Bkif-l) . This is equivalent to ﬁ(if+l,if+l) = 0 from

(3.2). Combining (1.11) and (3.3) yields (3.1). This completes the proof.
It is noted that the optimal cost of the system (1.1) with the

control (3.1) is given by
Yy =1 . {3
x (1°)P (io,lf)x(lo < (3.5)

The following lemma is necessary for the main theorems.

Lemma 3.1.
(1) P(i,3)) € P(1,3,) for i<d; <3, (3.6)
() PR3 2 P, ) for 1S3 <, (3.7)

(3) Assume R(i) satisfies (1.17) and 0 < Q(i) < agl . If the pair
#(i+1,i) , B(i)} 4is uniformly completely controllable and C(i) is bounded
such that |[|c(i)|| < @), for all i , then for a fixed N satisfying
lc < N < = there exist positive constants @, and a5 such that

ay, T <P, < ap T (3.8)

(4) Assume R(i) and Q(i) satisfy (1.17). If the pairs
{6(i+1,i), B(i)} and {#(i+1,i) , C(i)} are uniformly completely con-
trollable and observable respectively, then for a fixed N satisfying

L < N <= there exist positive constants %6 and 819 such that
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_ e
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-
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gl

0,1 € P({,i+N} < “171 . (3.9)

16

Proof: See Appendix C,

From a receding horizon concept a new control law is obtained by re-

placing if by is+N in (3.1): ‘thus,

u(i) = 27208 (1)BGIR™(EIB (1)+p(i+l,i+148)] N0 x(1)
(3.10)
= 7B (0P (ae1, ir1aNe X (1) 5 N > 2 (3.11)

where ;(i,j) may be obtained from (3.2). Some characteristics of
;(i,j) are illustrated in Fig. 1. The matrix §(i+1,i+l+N) is obtained
by summing (3.2) backward from i+l1+4N to i+l on a finite time interval.
The most important property of the control law (3.11) is that it is a
stable control, though it is obtained from a Riccati equation on a finite
time interval.
Theorem 3.2.

(1). Assume R(i) satisfies (1.17) and 0 < Q(i) < acl . If the
pair {#(i+l1,i),B(i)} is uniformly completely controllable and C(i) is

bounded such that ||c(1)]] <a, for all i , then for & fixed N

3
satisfying £c+l < N < ®» | the system (1.1) - (1.2) with the feedback centrol
law (3.11) is uniformly asymptotically stable. (Note: Q(i) and C(i)

can be identically zero).

(2). Assume R(i) and Q(i) satisfy (1.17). If the pairs
{#(i+1,i),B(i)} and ({@(i+1,i),Cc(i)} are uniformly completely controllable
and observable respectively, then for a fixed N satisfying
L +1<N<w® the system (1.1) -(1.2) with the feedback control law (3.11)
is uniformly asymptotically stable.

Proof: Consider the adjoint system of (1.1)-(1.2) with control law

(3.11):

b &

s A s
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x(1+1) = [0, - BCOR™H(DIB ()P (541, 5414800 1" TH5(5) (3.12)
together with the associated scalar valued function

V(x,i) = i'o;1§(1+1,i+1+n)o£'1§ ; (3.13)

From Lemma 3.1 (1) and (2.4), V(x,i) satisfies

e |§|2

)
1479

x| 2

€ V(x,i) ¢ (3.14)

®15%9
under the conditions of part (1). A similar inequality involving a6 and

a,, can be obtained under the conditions of part (2). Thus V(;,i) is a
positive definite function of x under either set of conditions. The dif-
ference of (3.13) along the solution of the adjoint system (3.12) is given as

follows:

V(x(i),i) - V(x(i+l),i+l)
= §ki)o;1§(i+l,i+1+N)¢§-1§(i)
s g B i 2.
3 iy : '
x (1+l)°i+lp(l*2’1*2+N)°i+1X(l+l)
= x"(1+1)[I - BGORI(1)BY (1)P L(i41,1424N) IP(i41,i+24N)[T - P L(i+1,i+14N)

LD A VL3N 2'e sty ) g e . ,’l“.
x B(i)R "(i)B'(i)]x(i+l) - x (1+1)0i+lP(1+2,1+2+N)¢i+lx(1+l)

n

X'+ [BGR™I(1)B (1) - B(i)R’l(i)B'(i)§'1(1+1,i+1+N)B(i)R'l(i)

x B'(1)Ix(i+1) - %' (i+1)[B(i)R™I(1)B' (i) - B(i+l,i+1+N)

-1
a1

+

Bisin s 142
P(1+2,1+2+N)0i*1]x(i+1) : (3.15)

From (3.2) we have

1
1

o + BCOR™HDBI() - 2(1) , (3.16)

P(i41,i424N) = 0, P(i+2,i+2¢N)0}
where Z(i) is the non-negative definite second term on the right side of

(3.2) with i and j replaced by i+l and i+2+N respectively.
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From (3.16) it follows that

1
1

BOIIR™I(1)B' (1) - P(i+1,i+14N) + 075 P(i+2,i+424N)0!"
i+l i+
= P(i+l,i+24N) - P(i+1,i+1+N) + 2(i) 2 0 , (3.17)

where the last inequality in (3.17) follows from Lemma 3.1(1). Thus the

relation (3.15) can be expressed as

V(x(i),i), - V(x(i+l),i+l)

s"Q(i+l)[B(i)R-l(i)B'(i)-B(i)R-l(i)B'(i)ﬁ-l(i+l,i+l+N)B(i)R-l(i)B'(i)];(i+l)

-1/2 -1/2

= —x'"(i+1)B(DR™2(1)S(RT4(1)B' (1)x(i+l)

where S(i) is defined by
BT SR | _1/2
S(i)QI - R (i)B (i)P “(i+l,i+1+N)B(i)R d)<1. (3.18)

If we can show that S(i) > a BI for some positive constant a and

i | 18
for all i , then the adjoint system (3.12) will be asymptotically unstable
which is possible if and only if the original system is asymptotically

stable. The proof proceeds as follows:

V(x(3),1) - V(x(i+1),i+1) < - 2, @ x (i+1)B(1)B (D)x(itl) .

18%
Thus we can have

v(x(i+1;x°,i°),i+1) - V(xo,io)

i -~
i ¢ (i ,k+1)B(k)B'(k)®'(i, k+l)
2 )% X, ésto p( o’ ( ( Do *o
A 12
> 0,000, | |° for some a,q > 0 and for 12> 1 + ¢, (3.19)

where 0p(1,1°) is the state transition matrix of the closed-loop system
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(3.1)-(3.11). The last inequality in (3.19) follows from Theorem 2.2

in that the pair {0 - B(i)R-l(i)B'(i)ﬁ-l(i+l i+1+N)0 , B(i)} is
uniformly completely controllable since R l(1)8 (1)P (1+1 itl+N)e, is
bounded from (1.17), (3.8), (3.9) and (2.4). Therefore, the solutions of
the adjoint system (3.12) can be shown to increase exponentially. In turn,
this can be shown to imply that the system (1.1)-(3.11) is uniformly
asymptotically stable. Thus, it remains to check the lower bound of the

matrix S(i) defined in (3.18). From (3.2) we have

s(i) =1 - r” Y2(n)pri)ei) + BRI (1)B(1) 1 B(1)R2
S1-1
= [jx + R'l’z(i)a'(i)c‘l(i)n(i)n‘l’fj : (3.20)
where
G(i) 2 oiil§(1+2, i+14N){I - 0' c (i+1)D'(i+1)(I + D(1+1)c(1+1)o P(i+2,i41+N)
' ' - - v =k
i+1C (i+1)D'(i+1)]" D(i+1)c(i+l)0 P(1+2,1+1*N)}0i+l
- oL p1/2 ~1/2
= .i#l (i42,i41+N)H(1)P"“(i+2 £+1+N)0i+l (3.21)
and where

- 1.1 ¢ ' A
HE) 8 1 - PM2(0e2, 5010000, 710" (10130 (141)[14D(#1)C(141)0] ) P(i42,5410M)

¢1°"i’1’°"‘*1’] ‘peisn)ccien) et BP0, 1e1en)

i

1/2 1 1/2 1

(i+2, i+1+N)0 "'(i+1)D'(i+1)D(1+1)C(1+1)0 (i42,i+14N)]";

(3.22)

=[1+F il

Note that G(i) is nonsingular for N > .

From (3.20), (3.21) and (3.22) it follows that

-1 2 22 -1,-1 4
[l s¢ |l z_[1+°5 °1o°g °1u‘1’°5 13%%s) ]

This completes the proof.
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After careful inspection of the matrix Riccati equation (3.2) and the
control law (3.11), it can be deduced that the control law (3.11) is the
optimal control law for the system (1.1)-(1.2) which minimizes the moving

cost function

i+N-1
§ y'(0)Q(k)y(k) + u'(k)R(k)ulk) (3.23)
k=i

with a moving terminal constraint x(i+N) = 0t . It will be interesting to
investigate some relationships between the modified control law (3.11) and

the fixed terminal control law (3.1) from which the control law (3.11) is
obtained. We can show that the quadratic cost for the system (1.1)-(1.2) with
the control law (3.11) is no more than that of the fixed terminal control

(3.1) with i_=1i_ + N.

Theorem 3.3. The quadratic cost (1.3) for the system (1.1)-(1.2) with the
control (3.11) has the following bounds:

11-1

' (1 JK( L) )x(1 ) < E y'(1)Q(i)u(i) + u'(i)R(i)uli)
(o]

ez yolrr
€ x (1°)P (10.1°+N)x(io). (3.24)
Proof: We have the following inequality:

x (P11, 14M)%(1) - x' (1+1)P 2441, 1414N)x(i41)
2 x" ()P (L, 1410N)x(1) - x' (E+1)P R(ie1,i¢1eN)x(ie1) +
x(i)[P'l(i.i+N) - P'l(i,i+1+N)]x(i)

3 x'(i)P'l(i,i010N)x(i) - x'(1+1)9‘1(1+1,1+1+u)x(i+1) (3.25)

JFAlthough the control (3.11) is optimal for the above problem, our main thesis
is that the receding horizon concept leads to one of the easiest stabilization
methods for linear systems.
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2 2" {ICTENE)CEE (i) » 2 (IR Duli), LE %)

L 7 (0)0()y(1) + u' (£IR(I)u(i)
f

oNIx( ),

p x'(lo)P'l(io,io+N)x(io) A x'<11)v‘1(il.il

The lower bound {s obvious. This completes the proof.

When the control law (3.11) is used as a suboptimal control to the stealy
uwtate control for (1.11), the error bound is given in Theorem 3.3, The ntaht
Jization of the system (1.1) with a prescribed degree of stability can he

obtained from the result in Theorem 3.2.
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which follows from the fact that P-l(i,i+N) > P-l(i,i+l+N) as given in

Lemma 3.1(2). From (1.5) and (1.6) we can obtain
x'"(1)p(i) - x"(i+1l)p(i+1l) = x'(i)C'(i)Q(i)C(i)x(i) + u'(i)R(i)u(i) (3.26)

for both the free and fixed terminal conditions (cf. [12]). For the fixed
terminal condition x(j) = 0, the quantities p(i), u(i) and x(i+l) in (3.26)

are given by
p(i) = P1(1,9)x(i)
u(i) = -R'l(i)B'(i)fB(i)R-l(i)g’(i)+P(i+l,j)]-l@(i+l,i)x(i) (3.27)
x(i+1) = [8(i+1,1)-B(IR™I(1)B' (1)[B(LIR™I(1)B (1)+P(i+1,5)1 To(is1,i)Ix(i).
Replacing j by i+14N in (3.27) and combining (3.26) and (3.25) we obtain

%' (P14, 1414N)x(1) - x'(i+1)P L(i41,1414N)x(i+1)
s x'(1)C'(1)Q(1)C(1)x(i) + u'(1IR(1)u(i), (3.28)

from which follows that

il-l

I y'(D))y(i) + u'(D)R(1)u(i)
‘o -1 -1
: i £ ¥ L el B z
€ x (io)P (1°,i°*N)x(1o) X (11)P (11.11+N)x(11).
The lower bound is obvious. This completes the proof.
When the control law (3.11) is used as a suboptimal control to the steady
state control for (1.11), the error bound is given in Theorem 3.3. The stabi-

lization of the system (1.1) with a prescribed degree of stability can be

obtained from the result in Theorem 3.2,
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Theorem 3.4. Assume that the conditions in Theorem 3.2 hold. Then the

system (1.1) with the feedback control law
u(i) = -R-l(i)B’(i)ﬁ;l(i+l,i+1+N)0(i+l.i)x(i), a 21 (3.29)

is uniformly asymptotically stable, where §&i+l,i+1+N) is obtained from (3.2)
with ¢(i+1l,i) replaced by a¢(i+l,i). Furthermore, there exists an L > 0 and

a y satisfying 0 < y < 1 such that the transition matrix ¢  (i,i ) of the
¥y P o

a
closed-loop system (1.1)-(3.29) satisfies
(i-io)
il % a3l ¢ L[l] e e & T (3.30)
& o a o
Proof: Consider the system
x(i+1) = a#(i+l,i)x(i) + B(i)u(i) (3.31)
y(i) = c(i)x(i) . (3.32)

It is easily seen that the pairs {a®(i+l,i), B(i)} and {a®#(i+l,i), C(i)}

are uniformly completely controllable and observable, respectively, if
{e(i+1,i), B(i)} and {#(i+l,i), C(i)} are uniformly conpletely controllable
and observable respectively. Thus Pu(i+l,i+1+N) satisfies the properties in
Lemma 3.1. Let Spu(i,io) be the state transition matrix of the system (3.31)

with the control law

aci) = -R'l(i)B'(i)?al(i+l,i+1¢N)ao(i+l.i)x(i) )

Then it is easy to see that $Pa(i,i°) = a(i-io)o (i,io) . From Theorem 3.2

Pa
it follows that llaPu(i,io)Il < Dy(i-io) for some L > 0 and 0 < y < 1.
(i-i)
From this it follows that ||e, (i,i ]| ¢ L[E} ® . This completes the
a

proof.

In the next section we can obtain the corresponding results for linear
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time invariant systems with simplified forms. Especially, the feedback gain
is shown to be a constant matrix.
IV. Linear Time Invariant Systems
Consider a linear time invariant system
x(i+l) = ox(i) + Bu(i) (4.1)
y(i) = Cx(i) (4.2)
where {¢, B, C} are constant matrices and ¢ is nonsingular, together with

a cost function

L} L
Iy (i)Qy(i) + u (i)Ru(i) (4.3)
J'0
L}
where Q =DD >0 and R > 0 are constant weighting matrices. If the pair
{¢,B} is completely controllable, then the minimization of (4.3) subject to

the end point constraint x(if) = 0 leads to the optimal feedback control law

(c£.(3.1))

1

u(i) = -R a'ﬁ‘l(if-i)ox(i) (4.4)

if the inverse in (4.4) exists, where P(k) is obtained from

Plke1) = o 1pyer ™t = 072800 “1ernr (zence (K)o Tt ) oo Mhck)er !

+ BR™1B',B(0) = 0.
The result analogous to Theorem 3.2 for this case is contained in the
following.
Theorem 4.1, Suppose ¢ is nonsingular. If the pair {¢,B} is completely
controllable, then for a fixed integer N satisfying n ¢ N < = the system
(4.1) is asymptotically stable with the fixed gain feedback control law

u(i) = R A R ex(i) (4.6)

oo A SRR B Lty
-
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where P(N) can be obtained from (4.5) corresponding to any chosen pair

{Q,R} with Q > 0 and R > 0. With the additional condition that the

“pair {¢,C} is deteptable and Q > 0, the result holds with n ¢ N ¢ =,

Proof: Although the proof is merely a specialization of Theorem 3.2 to the
time invariant case, it is noted that a direct proof of asymptotic stability

can be given in this case using the Lyapunov function V(x) = i'o_lP(N)Q‘-li

lpp l(nyed (i),

for the system x(i+l) = [¢ - BR™
The control law (4.6) is a generalization of a stabilizing feedback
control law given in [5] involving the inverse of the controllability Gramian

in that the result in [5] is obtained by choosing 0 = 0 (or C = 0) in (4.5).

That is, with Q = 0, P(N) is given by

N-1

P(N) = J o 'BrIprer?
i=0
and
: N-1 . %
Piv) = oM 1T olprlprer! y {4.7)
120

The advantage of the control law (4.6) to the one employing (4.7) is that the
former can weight the state, or the output, by choosing a proper Q. In [137, it

is shown that the matrix ¢ in (4.7) can be singular for a controllable sinple in-
put system. The control (4.6) can be regarded as a generalization of the stable
steady state control of (1.11) as shown in Fig. 2. From the special structure of
the time invariant system, the condition of Theorem 4.1 can be weakened as follows:

Proposition 4.1, Assume ¢ is nonsingular. If the pair {¢,B} is stabilizable,

then the system (4.1) is asymptotically stable with the following control law

1

u(i) = R~ e e (nyex(i), N 3 n, (4.8)




N I

where ﬁf(N) is the generalized inverse of the matrix P(N) obtained from

(4.5) for any Q > 0 and R > 0.

Proof: If {¢,B} is stabilizable, then there exists a nonsingular real matrix
S such that with the transformation x(i) = Sx(i), the system (4.1)-(u4.8) is
transformed to

d

x(1+1) = (% - BRIt ODAIR(E) , ¥ > n,

where P(N) is obtained from

Pk+1) = 3 100)87L - 6718003 ts Lo pr (14ncs Yo LB (k)
x &' Yt lerpry Ipes e Ip(k)e Tt + BR71EY
P(0) = 0
and
r0 ¢ | FBﬂ
11 12
. e -1 _
? ¢ = A B = and DCS = Hl 5 H2
. 0 022 0
?‘ i : ; g 4
‘ where °11 and 022 are nonsingular, {¢ll,Bl} is controllable, and 022, is a
\ stable matrix. Direct computation yields
. I o 7
i 51 T M~ lBipli(N)°11 s %y
{ x(i+1) = x(i) (4.9)
0 " 022
where Pll(k) satisfies (4.5) with ¢,DC, and B replaced by 011, Hl’ and Bl
respectively. Thus the matrix in (4.9) is a stable matrix from Theorem u4.1.

This completes the proof.

!

The result in Theorem 3.4 can be restated as follows: If the pair {¢,B} is
completely conirollable and ¢ nonsingular, then for a fixed N satisfying

n ¢ N < ® the system (4.1) is asymptotically stable with the control law

- S saman " PR BRI G 0 v k) oot v S e b
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ati) » -R‘lsv§;1<u)ox(i), s 33 (4.10)

where ﬁa(N) is obtained from (u4.5) with ¢ replaced by a¢. Furthermore, all
poles of the closed-loop System are located inside the circle of radius
Is|] = é—in the complex plane.

The results for the above regulator problem have other implications in a
dual problem of filtering theory.
V. Application to a Dual Problem in Filtering Theory.

Consider alinear stochastic system with white noises,

x(i+1l) = o(i+l,i)x(i) + B(i)w(i)

£5.1)
C(i)x(i) + v(i)

y(i)

where Ex(i ) = Xx(i ), E(x(i)) - x(i))) (x(i)) - x(i))' = ], Ew(i) = Ev(i) =

Ex(io)w'(io) Ew(i)v'(i) = 0, Ew(i)w'(i) = Q(i), and Ev(i)v'(i) = R(i). The

standard Kalman filter solution is given by

x(i+l) = oi{i(i) + Z(io,i)c'(i)IC(i)Z(io,i)c'(i)+n(i)l‘1 [y(i)-c(i)x(i)]}

{5.2)
(1) = X(1,)
where J(i_ ,i) is obtained from
[(i,5+41) = 0, J(1,)I-C(DIC((E,1)e" (1)+R(1) T ()], 1) Yo
(5.3)

+ B(QU)B'() ,  JU,1) =, igi3.

The filtering error e(i) j x(i) - x(i) has the mean e(i) represented by

S(is1) = o {I- J(i_,)C (1CM) [ ,1)C (1) + RGI (i) (5.4)

and variance given by 2(10,1). The dual problem of the fixed terminal minimum

energy problem, (1.1) to (1.4), is considered as the standard filtering problem

with a completely unknown initial condition, i.e.,

Ex(io) = unknown and Xo z -, (5.5)

Thus the filtering problem with a completely unknown initial condition is piven by

B ————————— i S Lo R PSRRI o OSIECEE B 0 sy BT 5 A SR TOh L 10 3 b ORI i o siises
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21T oi{;(i)+r'l(io,i)c'(i)[c <i)r‘1(i°,i)6(i)+n(i)]'1 [y(i)-C(i)x(i)1} (5.6)

x(io) = arbitrary,
where

P53+ = 0TI eg s (DatDe@e e, Doy

rGi,i) + ¢ (DR YE)ei) (5.7)

ri,j)
ECE D) =0
if the inverse in (5.6) exists. The error mean equation for the estimator

(5.6) is given by
26141} = éi{I-E-l(io,i)c'(i)R_l(i)C(i)}é(i) 3 (5.8)

Uniform complete controllability and observability of the system (5.1)
are defined as usual with the dual system of (5.1). We state the corresponding
results in this case without proof.

Corollary 5.1. Assume R(i) satisfies (1.18) and 0 < Q(i) < acI . If the

pair {o(i+l,i) , C(i)} is uniformly completely observable and B(i) is

bounded, then for a fixed N satisfying zo + 1 < N < ® the state estimator

x(i+41) = 0(i+1,i)x(1) + 8(i+1,)r 2(i-N,1)c’ (1)C (1) ri(i-n,i)cti)
+ RGDIHy(1) - e(1)x(i)] (5.9)
is uniformly asymptotically stable, where TI(i,j) is obtained from (5.7).
In Corollary 5.1 the value of N can be infinite under the additional

assumption of uniform complete controllability of the pair {#(i+l,i),B(i)}
and c“I < Qi) < asI . It is easily seen that the estimator (5.9) is the
optimal estimator which minimizes the criterion E(x(i+l) - ;(i+1))'(x(i+1)
- ;(ifl)) based on the moving information {y(i-N), . . . y(i)} and a |
completely unknown moving initial condition D(x(i-N) - x(i-N))(x(i-N)

= (]
- %(i-N)) == _ It is also noted that the significance of the estimator (5.6)

— -_
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lies in the fact that it is one of the easiest ways to obtain a linear stable

estimator.

VI. Concluding Remarks

An advantage of the control law (3.11) is that the stabilizing feedback
gains are obtained by summing a Riccati equation backward in time over a
finite interval, rather than an infinite time interval. The control law (4.6)
for time invariant systems generalizes a well known method of feedback stabili-
zation due to Kleinman, and can be interpreted as providing a means for
weighting the state or the output in the cost function by choosing Q$0 . In
the case of time invariant systems, the modified control law (4.6) can also
be interpreted as a practical way to avoid the singularity near the terminal
time of the optimal control (4.4) when the argument (if—i) in é-l(if-i)
is frozen at some time N = if—i > n . The important consideration is that
such expediency still renders the resulting feedback control law asymptotically
stable. Similar consideration applies to the comparison between the control
laws (3.1) and (3.11) which pertain to the time varying system (1.1)-(1.2).

Corresponding results for a dual problem in filtering theory have also been

discussed in this paper.
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Appendix

A. Proof of Theorem 2.1

The proof is almost the same as in [8] for continuous time systems. Thus
we only sketch its proof. Vector functions of time, wu(k) and y(k) ,

kc[io,if—l] can be considered as elements of the Hilbert space of product

spaces Hl =R"xR"x .. x A" and H2 =RP x RP x .. x ”RP (both if - io
times) with corresponding inner products defined as
i-1 i1
T ' ]
<up,uy> =k§i u GORMKDu, (k) and <y 4y,>0 =k§i y, (K)Q(k)y, (k) . The
o o

norms for the above spaces are induced by these inner products. The

operator G defined in (2.3) maps Hy into H, . Let yh(i) = C(1)e(i,i )x

~

|2 . Let u be an arbitrary control and y the corresponding

and Jh = th
output. Then it holds that y =y, + Gu and J(u,x)) = [ulZ + [Guy, |? .
Q

The vector pair (u,y) of the Hilbert space H3 = Hl X H2 with inner product

- -~ - -~

<(u1»Y1) ’ (uz.y2)> = <Uyeuy2p ¢ <Yl,y2>o belongs to the linear variety |

% i
V of H3 . By the projection theorem, <(u ,y ) , (u‘- Ry =y s g

r % A % ® * " & "o
from which follows that J(u ,xo) EJim ey ) ,{y sy )>=<n »U>p

. - # % %
+ <y ,y>y « Also from the fact that J = [u"|2 + ly, + 6u|? , we can obtain
R Q

% *2 Nin #
J = n ~|Gu | -|u |2 = g+ <Gu From this equation follows that
Q

h 208
* ] R % : ]
[Gu'|2 > (3, -J)2/3, and J /I, <1 - (Jeu |2/0.)(1 + 1/||G|]|2) . Thus
g~ h h h - h
* ”® '
1>0/3, 21/ + [I6]]2) . It is known that J = x K(i ,ig)x  and

L
Jh = xON(io,if)xo » Wwhich together with the above inequality verifies (2.1).
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B. Proof of Theorem 2.2

The proof is almost the same as in [6,7] and thus a sketch will suffice.
From (2.4), uniform complete controllability implies that the system (1.1) is
bounded. It is easily seen that the bounded system (1.1) is uniformly com-
pletely controllable if, and only if, there exists a positive integer EC> 0
such that w(i,i+lc): ulI for all i . Then it can be shown by contra-

diction that a bounded system is uniformly completely controllable if, and

only if, there exists a lc> 0 such that for every state 1§ ¢ R" and for
any time i , there exists an input ; defined on [i,i+lc-l] such that
if x(i) = ¢ then x(i+lc) = 0 and |;(k)|§ vy (|g]) for al1

kc[i,i+lc—1] . It is readily verified that if the control

v(k) = ;(k) - K(k);(k) is the input to the feedback closed-loop system
z(i+l) = [®(i+1,i)+B(i)K(i)]z(i) + B(i)v(i) where ;(k) is the trajectory
of the open-loop system due to the minimum energy control ; , then

z(i) = ¢ and z(i+lc) = 0 (in fact z(k) = x(k) for all ke[i,i*lc]) :

Thus we have |v()| < [uG)| + |[KOO|lIxCO] < y(|r]) +

k "
ay,|e(k,1)g + 1 00, 9)BG )| < ¥ (Jg]) for all ke[i,i+2_-1] where
3=1

vy(.) and vy(.) are bounded functions on bounded intervals.

The last inequality of the above relation follows from (1.14) and (2.4).
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C. Proof of Lemma 3.1
(1). The matrix P(i,j) defined in (3.1) can be obtained from the
following free terminal problem:

x(i+41) = & “2(ie1,i)m(1) + ¢ ~1(i41,8)c (1D (i)uli)

B (1-1)x(i) ;(io) s x

y(i) v

with the cost function

- R S kg
J vy GOR™ (k=1)y(k) + u (k)u(k) .
k=i

o

Apa -~

Since xoP(io,j)xo is the cost of the above problem, it is clear that
P(3,3,) < P(1,3,) .

(2). Since x;P-l(io,j)x° is the minimum cost of the fixed terminal
problem, the result is straightforward.

(3). The upper bound is obvious from (l1.14) and (2.4). Since §(i,i)
comes from the free terminal problem given in (1), we have from Theorem 2.1

P(i,itN) >

W(i,i+N)
1+ ||e]]
where
on k-l _1’2 ' l_l ] ] Lo
(Gu)(k) = J R (k-1)B (k=1)& ~“(k,3)C (3)D (§)u(§), ke[i,i+N-1] .
j=g

Thus we have

- k=1 “1/2 Via ' -
[(Gu)(x)| < § |IR g (k-1)B (k-1)8 ~2(k,5)¢ (330" (]| Ju(d)]
324

k-1 -1/2 - s
<Ja a P oy, o V2]5(9)]
424" 10[}52£N_1 13%

p

A T T A <

e e————

=
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- 1/2 -
; = -1/2
which yields that |Gu] < /N1 ag alo[sup ca(z)]ulsau Ju]
1<t<n-1

2 1)a"1a2 2 of
and [[6[[% < (N-1)a "a] [sup a,(2))? alqe, .
§ 1<2<N-1

(4). The proof may be found in its dual form in [2,31.
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